On the Performance of an Algebraic Multigrid
Solver on Multicore Clusters

A. H. Baker, M. Schulz, and U. M. Yang
{ abaker,schulzm,umyang} @linl.gov

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
PO Box 808, L-560, Livermore, CA 94551, USA

Abstract. Algebraic multigrid (AMG) solvers have proven to be ex-
tremely efficient on distributed-memory architectures. However, when
executed on modern multicore cluster architectures, we face new chal-
lenges that can significantly harm AMG’s performance. We discuss our
experiences on such an architecture and present a set of techniques that
help users to overcome the associated problems, including thread and
process pinning and correct memory associations. We have implemented
most of the techniques in a MultiCore SUPport library (MCSup), which
helps to map OpenMP applications to multicore machines. We present
results using both an MPI-only and a hybrid MPI/OpenMP model.

1 DMotivation

Solving large sparse systems of linear equations is required by many scientific
applications, and the AMG solver in hypre [14], called BoomerAMG [13], is
an essential component of simulation codes at Livermore National Laboratory
(LLNL) and elsewhere. The implementation of BoomerAMG focuses primar-
ily on distributed memory issues, such as effective coarse grain parallelism and
minimal inter-processor communication, and, as a result, BoomerAMG demon-
strates good weak scalability on distributed memory machines, as demonstrated
for weak scaling on BG/L using 125,000 processors [11].

Multicore clusters, however, present new challenges for libraries such as hypre,
caused by the new node architectures: multiple processors each with multiple
cores, sharing caches at different levels, multiple memory controllers with affini-
ties to a subset of the cores, as well as non-uniform main memory access times. In
order to overcome these new challenges, the OS and runtime system must map
the application to the available cores in a way that reduces scheduling conflicts,
avoids resource contention, and minimizes memory access times. Additionally,
algorithms need to have good data locality at the micro and macro level, few
synchronization conflicts, and increased fine-grain parallelism [4]. Unfortunately,
sparse linear solvers for structured, semi-structured and unstructured grids do

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344 (LLNL-CONF-429864).

not naturally exhibit these desired properties. Krylov solvers, such as GM-
RES and conjugate gradient (CG), comprise basic linear algebra kernels: sparse
matrix-vector products, inner products, and basic vector operations. Multigrid
methods additionally include more complicated kernels: smoothers, coarsening
algorithms, and the generation of interpolation, restriction and coarse grid oper-
ators. Various recent efforts have addressed performance issues of some of these
kernels for multicore architectures. While good results have been achieved for
dense matrix kernels [1,21,5], obtaining good performance for sparse matrix
kernels is a much bigger challenge [20,19]. In addition, efforts have been made
to develop cache-aware implementations of multigrid smoothers [9,15], which,
while not originally aimed at multicore computers, have inspired further research
for such architectures [18,12].

Little attention has been paid to effective core utilization and to the use of
OpenMP in AMG in general, and in BoomerAMG in particular. However, with
rising numbers of cores per node, the traditional MPI-only model is expected
to be insufficient, both due to limited off-node bandwidth that cannot support
ever-increasing numbers of endpoints, and due to the decreasing memory per
core ratio, which limits the amount of work that can be accomplished in each
coarse grain MPI task. Consequently, hybrid programming models, in which a
subset of or all cores on a node will have to operate through a shared memory
programming model (like OpenMP), will become commonplace.

In this paper we present a comprehensive performance study of AMG on a
large multicore cluster at LLNL and present solutions to overcome the observed
performance bottlenecks. In particular, we make the following contributions:

— A performance study of AMG on a large multicore cluster with 4-socket,
16-core nodes using MPI, OpenMP, and hybrid programming;

— Scheduling strategies for highly asynchronous codes on multicore platforms;

— A MultiCore SUPport (MCSup) library that provides efficient support for
mapping an OpenMP program onto the underlying architecture;

— A demonstration that the performance of AMG on the coarsest grid levels
can have a significant effect on scalability.

Our results show that both the MPI and the OpenMP version suffer from severe
performance penalties when executed on our multicore target architecture with-
out optimizations. To avoid the observed bottlenecks we must pin MPI tasks to
processors and provide a correct association of memory to cores in OpenMP ap-
plications. Further, a hybrid approach shows promising results, since it is capable
of exploiting the scaling sweet spots of both programming models.

2 The Algebraic Multigrid (AMG) Solver

Multigrid methods are popular for large-scale scientific computing because of
their algorithmically scalability: they solve a sparse linear system with n un-
knowns with O(n) computations. Multigrid methods obtain the O(n) optimality
by utilizing a sequence of smaller linear systems, which are less expensive to

compute on, and by capitalizing on the ability of inexpensive smoothers (e.g.,
Gauss-Seidel) to resolve high-frequency errors on each grid level. In particular,
because multigrid is an iterative method, it begins with an estimate to the solu-
tion on the fine grid. Then at each level of the grid, a smoother is applied, and
the improved guess is transferred to a smaller, or coarser, grid. On the coarser
grid, the smoother is applied again, and the process continues. On the coars-
est level, a small linear system is solved, and then the solution is transferred
back up to the fine grid via interpolation operators. Good convergence relies
on the smoothers and the coarse-grid correction process working together in a
complimentary manner.

AMG is a particular multigrid method that does not require an explicit
grid geometry. Instead, coarsening and interpolation processes are determined
entirely based on matrix entries. This attribute makes the method flexible, as of-
ten actual grid information may not be available or may be highly unstructured.
However, the flexibility comes at a cost: AMG is a rather complex algorithm.

We use subscripts to indicate the AMG level numbers for the matrices and
superscripts for the vectors, where 1 denotes the finest level, so that A; = A is
the matrix of the original linear system to be solved, and m denotes the coarsest
level. AMG requires the following components: grid operators Ay, ..., A,,, inter-
polation operators Py, restriction operators Ry (here we use Ry = (P;)7), and
smoothers Sy, where k = 1,2,...m — 1. These components of AMG are deter-
mined in a first step, known as the setup phase. During the setup phase, on each
level k, the variables to be kept for the next coarser level are determined using
a coarsening algorithm, P and Ry are defined, and the coarse grid operator is
computed: Ap+1 = R A Py.

Once the setup phase is completed, the solve phase, a recursively defined
cycle, can be performed as follows, where f(1) = f is the right-hand side of the
linear system to be solved and u(!) is an initial guess for u:

Algorithm: MGV (A, Ry, Py, Sk, u®, (),
If k = m, solve A,u(™ = f(m),
Otherwise:
Apply smoother Sy, i1 times to Apu®) =),
Perform coarse grid correction:
Set k) = f(B) — A (k)
Set r(k+1) = Ryr(),
Set e+ = 0.
Apply MGV (Agq1, Rk+1; Pk+17 Speg, BT p(ktD)y,
Interpolate e*) = Ppek+1
Correct the solution by u(k) — uk) 4 k),
Apply smoother Sy ps times to Apu®) = fk),

The algorithm above describes a V(u1, p2)-cycle; other more complex cycles such
as W-cycles are described in [3].

Determining appropriate coarse grids is non-trivial, particularly in parallel,
where processor boundaries require careful treatment (see, e.g.,[6]). In addition,

interpolation operators often require a fair amount of communication to deter-
mine processor neighbors (and neighbors of neighbors) [7]. The setup phase time
is non-trivial and may cost as much as multiple iterations in the solve phase.
The solve phase performs the multilevel iterations (often referred to as cycles).
These iterations consist primarily of applying the smoother, restricting the error
to the coarse-grid, and interpolating the error to the fine grid. These operations
are all matrix-vector multiplications (MatVecs) or MatVec-like, in the case of
the smoother. An overview of AMG can be found in [11,17, 3].

For the results in this paper, we used a modification of the BoomerAMG
code in the hypre software library. We chose one of our best performing options:
HMIS coarsening [8], one level of aggressive coarsening with multipass interpo-
lation [17], and extended+i(4) interpolation [7] on the remaining levels. Since
AMG is generally used as a preconditioner, we investigate it as a preconditioner
for GMRES(10).

The results in this paper focus on the solve phase (since this can be completely
threaded), though we will also present some total times (setup + solve times).
Note that because AMG is a fairly complex algorithm, each individual com-
ponent (e.g., coarsening, interpolation, and smoothing) affects the convergence
rate. In particular, the parallel coarsening algorithms and the hybrid Gauss-
Seidel parallel smoother, which uses sequential Gauss-Seidel within each task
and delayed updates across cores, are dependent on the number of tasks, and
the partitioning of the domain. Since the number of iterations can vary based
on the experimental setup, we rely on average cycle times (instead of the total
solve time) to ensure a fair comparison.

BoomerAMG uses a parallel matrix data structure. Matrices are distributed
across cores in contiguous block of rows. On each core, the matrix block is
split into two parts, each of which are stored in compressed sparse row (CSR)
format. The first part contains the coefficients local to the core, whereas the
second part contains the remaining coefficients. The data structure also contains
a mapping that maps the local indices of the off-core part to global indices as
well as information needed for communication. A complete description of the
data structure can be found in [10].

Our test problem is a 3D Laplace problem with a seven-point stencil gener-
ated by finite differences, on the unit cube, with 100 x 100 x 100 grid points
per node. Note that the focus of this paper is a performance study of AMG on
a multicore cluster, and not a convergence study, which would require a variety
of more difficult test problems. This test problem, albeit simple from a mathe-
matical point of view, is sufficient for its intended purpose. While the matrix on
the finest level has only a seven-point stencil, stencil sizes as well as the overall
density of the matrix increase on the coarser levels. We therefore encounter var-
ious scenarios that can reveal performance issues, which would also be present
in more complex test problems.

3 The Hera Multicore Cluster

We conduct our experiments on Hera, a multicore cluster installed at LLNL with
864 nodes interconnected by Infiniband. Each node consists of four AMD Quad-
core (8356) 2.3 GHz processors. Each core has its own L1 and L2 cache, but four
cores share a 2 MB L3 cache. Each processor provides its own memory controller
and is attached to a fourth of the 32 GB memory per node. Despite this sep-
aration, a core can access any memory location: accesses to memory locations
served by the memory controller on the same processor are satisfied directly,
while accesses through other memory controllers are forwarded through the Hy-
pertransport links connecting the four processors. This leads to non-uniform
memory access (NUMA) times depending on the location of the memory.

Each node runs CHAOS 4, a high-performance computing Linux variant
based on Redhat Enterprise Linux. All codes are compiled using Intel’s C and
OpenMP/C compiler (Version 11.1). We rely on MVAPICH over IB as our MPI
implementation and use SLURM [16] as the underlying resource manager. Fur-
ther, we use SLURM in combination with an optional affinity plugin, which uses
Linux’s NUMA control capabilities to control the location of processes on sets
of cores. The impact of these settings are discussed in Section 4.

4 Using an MPI-only Model with AMG

As mentioned in Section 1, the BoomerAMG solver is highly scalable on the
Blue Gene class of machines using an MPI-only programming model. However,
running the AMG solver on the Hera cluster using one MPI task for each of the 16
cores per node yields dramatically different results (Figure 1). Here the problem
size is increased in proportion to the number of cores (using 50x50x25 grid
points per core), and BG/L shows nearly perfect weak scalability with almost
constant execution times for any number of nodes for both total times and cycle
times. On Hera, despite having significantly faster cores, overall scalability is
severely degraded, and execution times are drastically longer for large jobs.

To investigate this observation further we first study the impact of affinity set-
tings on the AMG performance, which we influence using the before mentioned
affinity plugin loaded as part of the SLURM resource manager. The black line
in Figure 2 shows the performance of the AMG solve phase for a single cycle
on 1, 64, and 216 nodes with varying numbers of MPI tasks per node without
affinity optimizations (Aff=16/16 meaning that each of the 16 tasks has equal
access to all 16 cores). The problem uses 100x100 x100 grid points per node.
Within a node we partition the domain into cuboids so that communication
between cores is minimized, e.g., for 10 MPI tasks the subdomain per core con-
sists of 100x50x20 grid points, whereas for 11 MPI tasks the subdomains are
of size 100x100x10 or 100x100x9, leading to decreased performance for the
larger prime numbers. From these graphs we can make two observations: the
performance generally increases for up to six MPI tasks per node; adding more
tasks is counterproductive. Second, this effect is growing with the number of

nodes. While for a single node, the performance only stagnates, the solve time
increases for large node counts. These effects are caused by a combination of
local memory pressure and increased pressure on the internode communication
network.

Additionally, the performance of AMG is impacted by affinity settings: while
the setting discussed so far (Aff=16/16) provides the OS with the largest flexi-
bility for scheduling the tasks, it also means that a process can migrate between
cores and with that also between processors. Since the node architecture based
on the AMD Opteron chip uses separate memory controllers for each processor,
this means that a process, after it has been migrated to a different processor,
must satisfy all its memory requests by issuing remote memory accesses. The
consequence is a drastic loss in performance. However, if the set of cores that an
MPI task can be executed on is fixed to only those within a processor, then we
leave the OS with the flexibility to schedule among multiple cores, yet eliminate
cross-processor migrations. This choice results in significantly improved perfor-
mance (gray, solid line marked Aff=4/16). Additional experiments have further
shown that restricting the affinity further to a fixed core for each MPI task is
ineffective and leads to poor performance similar to Aff=16/16.

It should be noted that SLURM is already capable of applying this optimiza-
tion for selected numbers of tasks, as indicated by the black dashed line in Figure
2, but a solution across all configurations still requires manual intervention. Note
that for the remaining results in this paper optimal affinity settings were applied
(either manually using command line arguments for SLURM’s affinity plugin or
automatically by SLURM itself).

Total Times Average Cycle Times

30

Seconds

] 1000 2000 3000

No. of cores No. of cores

Fig. 1. Total times, including setup and solve times, (left) and average times per iter-
ation (right) for AMG-GMRES(10) using MPI only on BG/L and Hera. Note that the
setup phase scales much worse on Hera than the solve phase.

1 Node 4x4x4-64 Nodes 6x6x6=216 Nodes
0.7

0.6

| —afr-16/16 Aff=4/16 ----SIWURM |

Fig. 2. Average times in seconds per AMG-GMRES(10) cycle for varying numbers of
MPT tasks per node.

5 Replacing on-node MPI with OpenMP

The above observations clearly show that an MPI-only programming model is
not sufficient for machines with wide multicore nodes, such as our experimental
platform. Further, the observed trends indicate that this problem will likely get
more severe with increasing numbers of cores. With machines on the horizon
for the next few years that offer even more cores per node as well as more
nodes, solving the observed problems is becoming critical. Therefore, we study
the performance of BoomerAMG on the Hera cluster using OpenMP and MPI.

5.1 The OpenMP Implementation

Here we describe in more detail the OpenMP implementation within Boomer-
AMG. OpenMP is generally employed at the loop level. In particular for m
OpenMP threads, each loop is divided into m parts of approximately equal size.
For most of the basic matrix and vector operations, such as the MatVec or dot
product, the OpenMP implementation is straight-forward. However, the use of
OpenMP within the highly sequential Gauss-Seidel smoother requires an algo-
rithm change. Here we use the same technique as in the MPI implementation,
i.e., we use sequential Gauss-Seidel within each OpenMP thread and delayed
updates for those points belonging to other OpenMP threads. In addition, be-
cause the parallel matrix data structure essentially consists of two matrices in
CSR storage format, the OpenMP implementation of the multiplication of the
transpose of the matrix with a vector is less efficient than the corresponding MPI
implementation; it requires a temporary vector to store the partial matrix-vector
product within each OpenMP thread and the subsequent summation of these
vectors.

(a) (b)

Fig. 3. Two partitionings of a cube into 16 subdomains on a single node of Hera. The
partitioning on the left is optimal, and the partitioning on the right is the partitioning
used for OpenMP.

MatVec AMG-GMRES(10) Cycle
16 16
—— OpenMP
- ---MCSup+OpenMP
—MPl
«+++« MPI noopt
1 —— Perfect Speedup 1
6 NS . 6 e
1 1
1 6 11 16 1 6 11 16

Fig. 4. Speedup for the MatVec kernel and a cycle of AMG-GMRES(10) on a single
node of Hera.

Overall, the AMG solve phase, including GMRES, is completely threaded,
whereas in the setup phase, only the generation of the coarse grid operator (a
triple matrix product) has been threaded. Both coarsening and interpolation do
not contain any OpenMP statements.

Note that, in general, the partitioning used for the MPI implementation
is not identical to that of the OpenMP implementation. Whereas we attempt
to optimize the MPI implementation to minimize communication (see Figure
3(a)), for OpenMP the domain of the MPI task is sliced into m parts due to the
loop-level parallelism, leading to a less optimal partitioning (see Figure 3(b)).
Therefore, Figure 4 (discussed in Section 5.2) also contains timings for MPI using
the less-optimal partitioning (Figure 3(b)), denoted ‘MPI noopt’, which allows
a comparison of MPI and OpenMP with the same partitioning.

5.2 Optimizing Memory Behavior with MCSup

The most time intensive kernels, the sparse MatVec and the smoother, account
for 60% and 30%, respectively, of the solve time. Since these two kernels are
similar in terms of implementation and performance behavior, we focus our in-
vestigation on the MatVec kernel. The behavior of the MatVec kernel closely
matches the performance of the full AMG cycle on a single node. Figure 4 shows
the initial performance of the OpenMP version compared to MPI in terms of
speedup for the MatVec kernel and the AMG-GMRES(10) cycle on a single node
of Hera (16 cores). The main reason for this poor performance lies in the code’s
memory behavior and its interaction with the underlying system architecture.

On NUMA systems, such as the one used here, Linux’s default policy is to
allocate new memory to the memory controller closest to the executing thread.
In the case of the MPI application, each rank is a separate process and hence
allocates its own memory to the same processor. In the OpenMP case, though,
all memory gets allocated and initialized by the master thread and hence is
pushed onto a single processor. Consequently, this setup leads to long memory
access times, since most accesses will be remote, as well as memory contention
on the memory controller responsible for all pages. Additionally, the fine-grain
nature of threads make it more likely for the OS to migrate them, leading to
unpredictable access times.

Note that in this situation even a first-touch policy, implemented by some
NUMA-aware OS and OS extensions, would be insufficient. Under such a policy,
a memory page would be allocated on a memory close to the core that first uses
(typically writes) to it, rather than to the core that is used to allocate it. However,
in our case, memory is often also initialized by the master thread, which still
leads to the same locality problems. Further, AMG’s underlying library hypre
frequently allocates and deallocates memory to avoid memory leakage across
library routine invocations. This causes the heap manager to reuse previously
allocated memory for subsequent allocations. Since this memory has already
been used /touched before, its location is now fixed and a first touch policy is no
longer effective.

To overcome these issues, we developed MCSup (MultiCore SUPport), an
OpenMP add-on library capable of automatically co-locating threads with the
memory they are using. It performs this in three steps: first MCSup probes the
memory and core structure of the node and determines the number of cores and
memory controllers. Additionally, it determines the maximal concurrency used
by the OpenMP environment and identifies all available threads. In the second
step, it pins each thread to a processor to avoid later migrations of threads
between processors, which would cause unpredictable remote memory accesses.

For the third and final step, it provides the user with new memory allocation
routines that they can use to indicate which memory regions will be accessed
globally and in what pattern. MCSup then ensures that the memory is dis-
tributed across the node in a way that memory is located locally to the threads
most using it. This is implemented using Linux’s NUMALlib, a set of low-level
routines that provide fine-grain control over page and thread placements.

5.3 Optimized OpenMP Performance

Using the new memory and thread scheme implemented by MCSup greatly im-
proves the performance of the OpenMP version of our code, as shown in Figure 4.
The performance of the 16 OpenMP thread MatVec kernel improved by a factor
of 3.5, resulting in comparable single node performance for OpenMP and MPIL.
Note that when using the same partitioning the OpenMP+MCSup version of the
MatVec kernel shows superior performance than the MPI version for 8 or more
threads. Also the performance of the AMG-GMRES(10) cycle improves signifi-
cantly. However, in this case using MPI tasks instead of threads still results in
better performance on a single node. The slower performance is primarily caused
by the less efficient OpenMP version of the multiplication of the transpose of
the matrix with a vector.

6 Mixed Programming Model

Due to the apparent shortcomings of both MPI- and OpenMP-only programming
approaches, we next investigate the use of a hybrid approach allowing us to
utilize the scaling sweet spots for both programming paradigms and present
early results. Since we want to use all cores, we explore all combinations with
m MPI processes and n OpenMP threads per process with m x n = 16 within
a node. MPI is used across nodes. Figure 5 shows total times and average cycle
times for various combinations of MPI with OpenMP. Note, that since the setup
phase of AMG is only partially threaded, total times for combinations with large
number of OpenMP threads such as OpenMP or MCSup are expected to be
worse, but they outperform the MPI-only version for 125 and 216 nodes. While
MCSup outperforms native OpenMP, its total times are generally worse than the
hybrid tests. However when looking at the cycle times, its overall performance is
comparable to using 8 MPI tasks with 2 OpenMP threads (Mix 8 x 2) or 2 MPI
tasks with 8 OpenMP threads (Mix 2 x 8) on 27 or more nodes. Mix 2 x 8 does
not use MCSup, since this mode is not yet supported, and therefore shows a
similar, albeit much reduced, memory contention than OpenMP. In general, the
best performance is obtained for Mix 4x4, which indicates that using a single
MPI task per socket with 4 OpenMP threads is the best strategy.

7 Investigating the MPI-only Performance Degradation

Conventional wisdom for multigrid is that the largest amount of work and, con-
sequently, the most time is spent on the finest level. This also coincides with
our previous experience on closely coupled large-scale machines such as Blue
Gene/L, and hence we expected that the performance and scalability of a ver-
sion of the AMG preconditioner restricted to just two levels is similar to that
of the multilevel version. However, our experiments on the Hera cluster show a
different result.

Total times, all levels Cycle times, all levels
30

25
20
— — = e ST
15 — ok
— -
A - P —— o
10 R
KNed
5
[
0 50 100 150 200 0 50 100 150 200
5 levels
—e MPI 16x1
25
—+ OpenMP 1x16
—— MCSup 116
++a Mix 8x2 - %=
essAssseeszarsairasd)
-o- Mix4xa e Laersseraidy
- Mix2x8
o 50 100 150 200

Fig. 5. Total times (setup + solve phase) in seconds of AMG-GMRES(10) (top left)
and times in seconds for 100 AMG-GMRES(10) cycles (top right) using all levels (7 to
9) of AMG. Times for 100 cycles using two (bottom left) or five (bottom right) levels
only. ‘m x n’ denotes m MPI tasks and n OpenMP threads per node.

The left plot on the bottom of Figure 5 illustrates that on two levels the MPI-
only version performs as well as Mix 8x2 and Mix 4 x4, which indicates that the
performance degradation within AMG for the MPI-only model occurs on one or
more of the lower levels. The right plots in Figure 5 confirm that, while the MPI-
only version shows good scalable performance on two levels, its overall time is
increasing much more rapidly than the other versions with increasing numbers
of levels. While both OpenMP and MCSup do not appear to be significantly
affected by varying the number of levels, performance for the variants that use
more than one MPT task per node decreases (the Mix 4x4 case is least affected).
We note that while we have only shown the degradation in MPI-only performance
with increasing numbers of levels for the solve phase, the effect is even more
pronounced in the setup phase.

To understand the performance degradation for the MPI-only version on
coarser levels, we must first consider the difference in the work done at the finer
and coarser levels. In general, on the fine grid the matrix stencils are smaller
(our test problem is a seven-point stencil on the finest grid), and the matrices
are sparser. Neighbor processors, with which communication is necessary, are

generally fewer and “closer” in terms of process ranks and messages passed
between processors are larger in size. As the grid is coarsened, processors own
fewer rows in the coarse grid matrices, eventually owning as little as a single
row or even no rows at all on the coarsest grids.! On the coarsest levels there
is very little computational work to be done, and the messages that are sent
are generally small. However, because there are few processes left, the neighbor
processes may be farther away in terms of process ranks. The mid-range levels
are a mix of all effects and are difficult to categorize. All processors will remain
at the mid-levels, but the stencil is likely bigger, which increases the number
of neighbors. Figure 6 shows the total communication volume (setup and solve
phase) collected with TAU/ParaProf [2] in terms of number of messages sent
between pairs of processes on 128 cores (8 nodes) of Hera using the MPI-only
version of AMG. From left to right in the figure, the number of AMG levels is
restricted to 4, 6, and 8 (all) levels, respectively. Note that the data in these
plots is cumulative, e.g., the middle 6-level plot contains the data from the left
4-level plot, plus the communication totals from levels 5 and 6. The fine grid
size for this problem is 8,000,000 unknowns. The coarsest grid size with the 4,
6, and 8 levels is 13643, 212, and 3 unknowns, respectively.

Fig. 6. Communication matrices indicating the total number of communications be-
tween pairs of 128 cores on 8 nodes. The x-axis indicates the id of the receiving MPI
task, the the y-axis indicates the id of the sender. Areas of black indicate zero messages
between cores. From left to right, results are shown for restricting AMG to 4, 6, and 8
(all) levels, respectively.

These figures show a clear difference in the communication structure in dif-
ferent refinement levels. For 4 levels we see a very regular neighborhood com-
munication pattern with very little additional communication off the diagonal
(black areas on the top/right and bottom/left). However, on the coarser levels,
the communication added by the additional levels becomes more arbitrary and
long-distance, and on the right-most plot with 8 levels of refinement, the com-
munication has degraded to almost random communication. Since our resource
manager SLURM generally assigns process ranks that are close together to be

! When all levels are generated, the AMG algorithm coarsens such that the coarsest
matrix has fewer than nine rows.

physically closer on the machine (i.e., processes 0-15 are one a node, processes 16-
31 are on the next node, etc.), we benefit from regular communication patterns
like we see in the finer levels. The more random communication in coarser levels,
however, will cause physically more distant communication as well as the use of
significantly more connection pairs, which need to be initialized. The underlying
Infiniband network used on Hera is not well suited for this kind of communica-
tion due to its fat tree topology and higher cost to establish connection pairs.
The latter is of particular concern in this case since these connections are short
lived and only used to exchange very little communication and hence the setup
overhead can no longer be fully amortized.

When comparing the setup and the solve phase, we notice that the solve phase
is less impacted by the performance degradation. While the setup phase touches
each level only once, the solve phase visits each level at least twice (except the
coarsest) in each iteration. This enables some reuse of communication pairs and
helps to amortize the associated overhead.

We note that on more closely coupled machines, such as Blue Gene/L with
a more even network topology and faster communication setup mechanisms, we
don’t see this degradation. Further the degradation is less in the hybrid OpenMP
case, since fewer MPI tasks, and with that communication end points as well as
communication pairs, are involved.

8 Summary

Although the hypre AMG solver scales well on distributed-memory architectures,
obtaining comparable performance on multicore clusters is challenging. Here we
described some of the issues we encountered in adapting our code for multicore
architectures and make several suggestions for improving performance. In partic-
ular, we greatly improved OpenMP performance by pinning threads to specific
cores and allocating memory that the thread will access on that same core. We
also demonstrated that a mixed model of OpenMP threads and MPI tasks on
each node results in superior performance. However, many open questions re-
main, particularly those specific to the AMG algorithm. In the future, we plan
to more closely examine kernels specific to the setup phase and include OpenMP
threads in those that have not been threaded yet. We will also explore the use
of new data structures.

References

1. K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer, D. Pat-
terson, W. Plishker, J. Shalf, S. Williams, and K. Yelick. The landscape of parallel
computing research: A view from Berkeley, 2006.

2. R. Bell, A. Malony, and S. Shende. ParaProf: A Portable, Extensible, and Scalable
Tool for Parallel Performance Profile Analysis. In Proceedings of the International
Conference on Parallel and Distributed Computing (Euro-Par 2003), pages 17-26,
Aug. 2003.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

W. Briggs, V. Henson, and S. McCormick. A Multigrid Tutorial, 2nd ed. STAM,
Philadelpia, PA, 2000.

A. Buttari, J. Dongarra, J. Kurzak, and P. Luszczek. The impact of multicore on
math software, LNCS vol. 4699. In M. Heroux, P. Raghavan, and H. Simon, editors,
Applied Parallel Computing. State of the Art in Scientific Computing, 2007.

A. Buttari, P. Lusczek, J. Kurzak, J. Dongarra, and G. Bosilca. A rough guide to
scientific computing on the PlayStation 3, 2007.

E. Chow, R. Falgout, J. Hu, R. Tuminaro, and U. Yang. A survey of paralleliza-
tion techniques for multigrid solvers. In M. Heroux, P. Raghavan, and H. Simon,
editors, Parallel Processing for Scientific Computing. STAM Series on Software,
Environments, and Tools, 2006.

H. De Sterck, R. D. Falgout, J. Nolting, and U. M. Yang. Distance-two interpola-
tion for parallel algebraic multigrid. Num. Lin. Alg. Appl., 15:115-139, 2008.

H. De Sterck, U. M. Yang, and J. Heys. Reducing complexity in algebraic multigrid
preconditioners. SIMAX, 27:1019-1039, 2006.

C. Douglas, J. Hu, M. Kowarschik, U. Ruede, and C. Weiss. Cache optimization for
structures and unstructured grid multigrid. Electronic Transactions on Numerical
Analysis, 10:21-40, 2000.

R. Falgout, J. Jones, and U. M. Yang. Pursuing scalability for hypre’s conceptual
interfaces. ACM ToMS, 31:326-350, 2005.

R. D. Falgout. An introduction to algebraic multigrid. Computing in Science and
Eng., 8(6):24-33, 2006.

C. Garcia, M. Prieto, J. Setoain, and F. Tirado. Enhancing the performance of
multigrid smoothers in simultaneaous multithreading architectures. In VECPAR
2006, LNCS 4395, pages 439-451. Springer, 2007.

V. E. Henson and U. M. Yang. BoomerAMG: a parallel algebraic multigrid solver
and preconditioner. Applied Numerical Mathematics, 41:155-177, 2002.

hypre. High performance preconditioners. http://www.llnl.gov/CASC/linear_solvers/.

M. Kowarschik, I. Christadler, and U. Ruede. Towards cache-optimized multigrid
using patch-adaptive relaxation. In Dongarra, Madsen, and Wasniewski, editors,
PARA 2004, LNCS 3732, pages 901-910. Springer, 2006.

Lawrence Livermore National Laboratory. SLURM: Simple Linux Utility for Re-
source Management. http://www.llnl.gov/linux/slurm/, June 2005.

K. Stiiben. An introduction to algebraic multigrid. In U. Trottenberg, C. Oosterlee,
and A. Schiiller, editors, Multigrid, pages 413-532. Academic Press, London, 2001.
D. Wallin, H. Loef, E. Hagersten, and S. Holmgren. Multigrid and Gauss-Seidel
smoothers revisited: Parallelization on chip multiprocessors. In ICS 2006, Proceed-
ings, pages 145-155, 2006.

S. Williams, L. Oliker, R. Vuduc, J. Shalf, and K. Yelick. Optimization of sparse
matrix-vector multiplication on emerging multicore platforms. Parallel Computing,
35:178-194, 2009.

S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimiza-
tion of sparse matrix-vector multiplication on emerging multicore platforms. In
Proceedings of IEEE/ACM Supercomputing '07, 2007.

S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick. Scien-
tific computing kernels on the cell processor. International Journal of Parallel
Programming, 2007.

